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Abstract: To decrease the impact of Partially Observable MDP on deep reinforcement learning 
performance of intersection signal control, A deep reinforcement learning is proposed in this paper 
with utilizing the real-time GPS data as well as learning the control of the traffic lights in single 
intersection. We integrate deep reinforcement learning network (DRQN) with recurrent neural 
network (RNN) and apply deep network, experience pool and greedy strategy in deep reinforcement 
learning strategy. It solves the problem of overestimation of target Q value and insufficient 
long-term experience learning in the standard reinforcement learning of traffic signal control. The 
comparison of performance was made between the proposed method and standard Deep Q-Network 
(DQN) on the partial observation of traffic situations. The experimental results show that both DQN 
and DRQN methods can adjust their traffic signal timing control strategies according to the specific 
traffic conditions as well as calculating a lower average delay time of vehicle than that of fixed-time 
control.  Besides, the simulation effect of DRQN learning method is better than that of DQN 
learning method in different probe vehicle proportion environment.  

1. Introduction 
The inefficient control of signals leads to many problems. The most serious problem is that the 

paralysis of the signal light control system leads to frequent traffic accidents [1]. Therefore, how to 
optimize the signal timing scheme and improve the operation efficiency of intersections has become 
an important key issue in the field of intelligent transportation. Because the complexity of traditional 
reinforcement learning increases exponentially and most successful reinforcement learning methods 
depend on the selection of artificial features, the quality of learning results mostly depends on the 
quality of feature selection [2] also increases the difficulty of control. The recent rapid development 
of Deep learning makes it possible to extract effective features directly from raw data. Some studies 
have proposed the application of deep reinforcement learning to solve traffic light control 
problems[3][4]. It is appropriate that modeling a partially observable MDP, namely POMDP, through 
a non-stationary. At least two factors make the traffic environment of a single intersection an object 
of local observation: (1)The traffic-flow pattern of intersections is  unaware. (2) The vehicles at 
intersection are regarded as one part of entire traffic flow.  The vehicles’ data are captured from 
vehicle-mounted GPS devices(probe vehicle), it will upload real-time GPS data to remote data 
centers. However, it is still difficult for solving the problem in POMDP. Literature [5] proves that the 
state of a single intersection is partially observable Markov (POMDP). In order to further reduce the 
impact of POMDP characteristics on the performance of deep Q learning at intersections, this paper 
improves the structure of the deep neural network by introducing Deep Recurrent Q Network 
(DRQN). Experiments show that the performance of DRQN is better than that of DQN, and it is better 
than the traditional intersection control methods of timing control and Q learning control. 

2. System Model 
First, the traffic signal control problem is represented by a deep reinforcement learning problem 

with building a intersection model. The following four intersections, as shown in FIG. 1, are 
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respectively two straight lanes, one left lane, and one right lane. Next, this section defines the state, 
action and reward functions in Agent learning respectively. 

 

Entrance A

Entrance B

Entrance C

Entrance D

 
Fig. 1. The intersection model 

2.1 State Space 

Assuming that the vehicle at the current intersection is shown in FIG. 2 (a), the road is divided into 
several small sections called cells, and the length of each cell is C. The position and velocity matrix of 
vehicles at the current intersection are shown in Fig. 2 (b) (c), which shows the matrix representation 
of traffic network state (when a vehicle crosses two cells, a cell with a larger occupancy is selected). 
The state consists of two matrices: (1) binary matrix of vehicle position (Fig. 2b). (2) Vehicle speed 
matrix (Fig. 2c). Specifically, by creating a grid in which cells can be represented as a binary matrix, 
the lane is divided into several cells with a fixed length; An element in the corresponding matrix of 
each cell; Each element of matrix represents the number and speed of vehicles in the corresponding 
cell. The speed is expressed as the maximum allowable speed of the current vehicle. 

Cell

Stopping line  
(a) Entrance A Simulation Environment State 



















11101000

11000000

10000000

10000000

 
(b) Entrance A Position Matrix 
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 (c) Entrance A Speed Matrix 

Fig. 2. Environmental State Representation 
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2.2 Action Space 
The traffic control model aims at find a optimization measurement. , and the accumulated return of 

the model is maximized with the training time. It must select an operation from the set of all available 
operations after agents observe the environmental state. In this paper, the possible action of Agent is 
traffic signal phase allocation (i.e. controlling the combination of traffic lights in each lane of the 
whole intersection). Possible actions are North-South Green (NSG), East-West Green (EWG), 
North-South Left-Green (NSLG), East-West Left-Green (EWLG). Formally, the set of all possible 
operations A is defined as A={NSG, EWG, NSLG, EWLG}. 

2.3 Reward Definition 
In terms of traffic signal control, several evaluation criteria are used to distinguish whether the 

control strategy improves traffic conditions, such as changes in vehicle queues, cumulative vehicle 
delays, and vehicle throughput. In this paper, we measure the total number of queued vehicles in front 
of the parking line at step t and define the reward as the change of cumulative vehicle delay between 
different behaviors. We use 

                        𝑟𝑟𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡+1                              (1) 

as reward function, so that when the number of the halting vehicle decreases between time step t 
and t+1, the agent will receive a positive reward to encourage its decision. 

2.4 Agent 
The traffic signal control agent (Agent) is composed of the DRQN network is shown in FIG. 3. A 

combination of convolution neural network and cyclic neural network is used to represent Q function. 
The position matrix and velocity matrix are combined into a small two-channel image, and two 
convolution layers are used to capture  available features. The first layer has four convolution filters 
with size  2 *2, and the second layer has eight convolution filters with size 2 *2. There is a 
112-dimensional vector flattened at output layer. The next part of the DRQN network is a simple 
embedding layer, with a phase vector was encoded into 10-dimensional.  Finally, 112-dimension and 
10-dimension vectors are connected in series as an input of LSTM of 32 hidden units, and the 
continuous layer is the full-connection layer of 8 outputs and the full-connection layer of 2 outputs. 
The activation function uses ReLU, followed by the LSTM layer activated by ReLU. A more 
standard network structure has been established. The weight of deep neural networks can be updated 
through 2 methods. i.e. boot sequential update and boot random update[6]. Both updating methods 
can converge to similar performance. In this paper, the parameters of the deep neural network are 
adjusted by guiding random updating. In each training time step, a fixed length of experience 
sequence is randomly selected. Firstly, Q learning objectives are generated recursively by using the 
objective network based on the experience sequence. The classical back propagation algorithm is 
used for training. The gradient descent algorithm updates its internal parameters step by step. In 
general, the loss function of deep reinforcement learning is defined as: 

L(θ) = 1
2
𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′[(𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′ 𝑄𝑄′(𝑠𝑠′,𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎))2]                           (2) 

Among them, 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑎𝑎′ 𝑄𝑄′(𝑠𝑠′,𝑎𝑎′)plays the role of learning goal in supervised learning. 𝑄𝑄′(𝑠𝑠′,𝑎𝑎′) is 
an estimate of the Q-value function of another neural network, i.e. the target network. The internal 
parameters of the target network can be updated from the main neural network after a certain time 
step. Use experience playback and target network [7] to stabilize the learning process. The update rule 
is defined as: 

𝑄𝑄𝑡𝑡+1(𝑆𝑆𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡(𝑆𝑆𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡[𝑟𝑟𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝑄𝑄𝑡𝑡+1(𝑆𝑆𝑡𝑡+1,𝑎𝑎𝑡𝑡+1) − 𝑄𝑄𝑡𝑡(𝑆𝑆𝑡𝑡 ,𝑎𝑎𝑡𝑡)]             (3) 
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Among them, 𝛼𝛼 represents the learning rate and 𝛼𝛼𝛼𝛼[0,1]The leaning rate determines the speed of 
updating the value function. 𝛾𝛾 is the discount factor 𝛾𝛾𝛾𝛾[0,1] , and the discount factor determines the 
importance of future rewards. 

The prediction of  Q target is not accurate at the beginning because the LSTM hidden state is zero 
at the beginning. Therefore, the second half of the predicted Q target is the only part we used as 
training target, and the error signals train the DRQN with  time back propagation. The standard DQN 
is trained based on a random sampling experience and back propagation algorithm. Both networks are 
trained by Adam[8] algorithm. Agent will choose a random behavior to learn the optimal strategy 
with 1-ε probability for avoiding local extremum during the training process. During training, E 
decreases gradually with the number of training: 

                     ε = max (0.01,1 − 𝑛𝑛
𝑁𝑁

)                                                   (4) 

Among them, n is the current number of training, N is the total number of training. 
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Fig. 3. The recurrent Q-network model 

2.5 DRQN algorithm steps 
Traffic signal algorithm control based on deep recurrent Q-learning is summarized as follows: 

Algorithm: DRQN algorithm 
1  Initialize DRQN network structure, and take as parameter θ 
2  Initialize ε, γ, N 
3  For epoch=1 to N do 
4  Initialize intersection state 𝑠𝑠0 , action a0 
5  For 1 to T do 
6  Choose action a according to ε-greedy policy 
7  Take action a, observe reward r and next state 𝑠𝑠𝑡𝑡+1 
8  If the size of memory m > M 
9  Delete the oldest memory in memory 
10  End if 
11  Store transition(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) in M 
12  Update 𝜃𝜃 
13  𝑠𝑠𝑡𝑡 → 𝑠𝑠𝑡𝑡+1 
14  End for 
15  End for 
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3. Simulation Results 
The traffic was simulated by the simulation tool of urban mobility (SUMO) to verify the 

effectiveness of the proposed traffic control model. . Detailed simulation settings are as follows: 

3.1 Simulation environment and parameter setting 
Traffic roads and parameter settings: 
Consider a four-lane intersection, each with four lanes, as shown in FIG. 1. The road length is 500 

meters; the section L is 160 meters; the cell length C is 8 meters; the road speed limit is 19.444 m/s; 
the vehicle length is 5 meters;  the minimum gap between vehicles is 2.5 meters. For traffic signal 
timing parameters, the green light phase interval g is 2 seconds; the yellow light interval y is 4 
seconds. The minimum green light time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is 6 seconds and the maximum green light time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is 
60 seconds. The traffic data of Huangshan Road and Tianzhi Road intersection in the Hefei 
demonstration area on October 15, 2018, are used. The representative time points are 08:00, 11:00 
and 23:00. At this time, the flow corresponds to the higher-saturated flow, the near-saturated flow, 
and the low-saturated flow, respectively. The specific values are shown in Table I. 

Table 1.Flow Value of Three Saturation Flows at Entrance 

 Entrance A Entrance A Entrance A Entrance A 
higher-saturated flow 92 327 87 318 
near-saturated flow 459 943 672 742 
low-saturated flow 826 1798 729 1324 

3.2 Simulation results and analysis 
The reward value of the Agent depends on whether it can reduce the number of parked vehicles. 

The queue length and the average-waiting time are shortened by utilizing the strategy. Firstly, the 
convergence of DQN and DRQN methods is tested. Vehicles reach the intersection through the 
Poisson process, which is approximately binomial distribution. Assume that the probability of arrival 
of north-south (N-S) or north-south (S-N) direct vehicles is 1/4 (that is, one north-south (N-S) or 
north-south (S-N) direct vehicle will be produced every 4 seconds on average). As shown in FIG. 4 
the performances of DQN and DRQN methods are superior to timing control as well as but the 
DRQN is  significantly superior to the standard DQN method, which uses a sequence to update its 
internal parameters during each training, and performs exploratory guidance random update more 
effectively than DQN. 

Real traffic environment full of randomness, in general, it is almost impossible that obtaining the  
state as real as the whole traffic environment, turning the environment into POMDP process, for 
example, only a small number of vehicles will upload their own position and speed to the data center 
during the process of real-time acquisition of vehicle data.  The permeability [9] tend to be different 
when the probe vehicles detect the traffic environment in a particular scenario, even as the transport 
time of different changes this paper, the proportion of probe vehicles and the delay of data 
transmission are considered, and the permeability of detecting vehicles is changed by changing the 
proportion of observable vehicles. In the process of the simulation experiment, the position and 
velocity information of probe vehicles can decrease the value of the density vector and increase the 
sparsity of density vector and velocity vector correspondingly. 
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Fig. 4. The average waiting time of three traffic density network structures 

 
Fig. 5. Average waiting time of different permeability 

FIG.5 shows the performance under different permeability. Testing and training are carried out in 
traffic environment with the same proportion of floating cars. Each data point expresses the average 
result in 20 test sets. The results show that the performance of DQN and DRQN is better than that of 
timing control. Adding deep loop network to DQN network can not only benefit from discrete 
representation of state, but also learn similar performance under different permeability. Combining 
the state of storage unit in LSTM with the input of current state, it can better identify the actual traffic 
environment state. 

Can be seen from the FIG.6, under the environment of the permeability of 50% of the two kinds of 
Agent for training and testing, respectively in each time step input zero density and velocity vector 
will there is a 50% chance of ignoring the current vehicle information DRQN still keep good results 
show that the robustness DRQN Agent not only benefited from discrete status, but also benefit from 
the storage unit in the enrichment of historical information, the information under the different 
permeability may be using a loop similar to that of Q learning another advantage is that it can carry 
historical information data, even can't see the current state of environment, can also be accurately to 
make a decision.  
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Fig. 6. Average waiting time of different permeability 

4. Simulation Results 
With the increasing complexity of urban traffic environment, hidden modes in traffic state are 

difficult to find. Deep reinforcement learning provides an effective method to mine hidden patterns 
from high-dimensional data and provides a solution for urban traffic control. We compare the 
performance of deep recurrent Q network with that of a standard Q network. Experiments show that 
the deep recurrent Q network learning can better approximate the strategy in the local observation 
environment. It is good for distinguishing the actual environmental status when integrating the 
historical status with current input status. In this paper, the urban road traffic signal optimization and 
other related issues are systematically studied, and some research results of theoretical and practical 
application value have been achieved. However, as the complexity of the urban traffic environment 
increases, the training time will be greatly increased. Many advanced deep reinforcement learning 
technologies will be considered in the future for decreasing the training time as well as improving the 
training effect, such as Dueling-DQN or Double- DQN.  
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